home *** CD-ROM | disk | FTP | other *** search
/ Space & Astronomy / Space and Astronomy (October 1993).iso / mac / TEXT / STATION / STFNOV91.NWS < prev    next >
Text File  |  1992-09-09  |  16KB  |  323 lines

  1. "6_10_8_15.TXT" (15445 bytes) was created on 11-26-91
  2. NOVEMBER 1991 "STATION BREAK" NEWSLETTER
  3.  
  4. Shuttle Experiment to INSPIRE Students, Individuals  to Learn
  5.  
  6.      High school students nationwide next year will help space physicists
  7. with basic research on ionosphere radio waves.  This unique program and
  8. the network of radio wave receivers established will likely be used aboard
  9. future Shuttle flights, as well as Space Station Freedom.
  10.  
  11.      Known as INSPIRE (Interactive NASA Space Physics Ionosphere Radio
  12. Experiment), the program could involve as many as 100,000 students, mostly
  13. high school physics and other science students, amateur radio operators
  14. and other private citizens  across the country, said Space Station Freedom
  15. Chief Scientist Dr. William Taylor.
  16.  
  17.      Taylor is a co-investigator for SEPAC (Space Experiments with
  18. Particle Accelerators), the experiment INSPIRE will support.   The primary
  19. investigator for SEPAC is Dr. James Burch, who is with the Southwest
  20. Research Institute.
  21.  
  22.      The program is being sponsored by TRW, Farallon Mesa Art and
  23. Printing, and Micropower Systems, with the cooperation of NASA.  INSPIRE's
  24. goal is to help the science team on an April 1992 Spacelab mission find
  25. the ground footprint of radio waves that travel from space to Earth.
  26.  
  27.      "We are looking for assistance to do basic research that really
  28. cannot be done in any other way.  I don't think anything quite like this
  29. has ever been done.  Besides, there's no way we could afford to fund
  30. thousands of professionals and outfit them with equipment; it would cost
  31. millions of dollars," said Taylor.
  32.  
  33.      Students and other INSPIRE participants will record data when the
  34. SEPAC experiment is turned on during the Spacelab Atlas mission next year.
  35.  
  36.  
  37.      "Costs involved for the student project are minimal," said Bill Pine,
  38. who is with the science department at Chaffey High School in Ontario,
  39. Calif. "And my experience with a similar student project called ACTIVE in
  40. 1989-1990 has shown that the hands-on experience and other benefits, such
  41. as enthusiastic students and teachers, results in a very attractive return
  42. on investment."   Kits for students to conduct the experiment will cost
  43. less than $50.
  44.  
  45.      Pine said he is convinced that the money teachers and schools spend
  46. on the kits will not be wasted because the kits will be used more than
  47. once.  "I believe that there will be similar radio wave length
  48. investigations on other Shuttle missions and on Space Station Freedom. 
  49. Also, radio transmitters used for navigation can be studied with the
  50. INSPIRE kit.  And the INSPIRE receiver can be used to study natural radio
  51. waves.  For example, the source of most natural radio waves is lightning,"
  52. Pine said.
  53.  
  54.      "Lightning generates a burst of electromagnetic radiation with a 
  55. broad range of frequencies including audio.  The audio signals can be
  56. detected with an antenna and amplified with the INSPIRE receiver. 
  57. Although static is annoying when listening to a radio station, static
  58. becomes fascinating when it is thought of as a natural radio source.  It
  59. turns out that there are many kinds of static ranging from sharp 'pops' to
  60. chirping 'tweaks' to musical 'whistlers'."
  61.  
  62.      "These sounds all have the  same source -- lightning -- but each has
  63. been processed differently by a combination of the ionosphere and the
  64. magnestophere. Thus, a study of natural radio waves with the INSPIRE
  65. receiver can lead to an increased understanding of the physical world,"
  66. Pine said.
  67.  
  68.      "A goal of INSPIRE is to create a network of monitoring stations
  69. across the United States.  This will create an extensive data-taking
  70. capability previously unavailable."
  71.  
  72.  
  73.  
  74. How High Schools, Individuals Can Participate
  75.  
  76.      High schools and individuals can help the SEPAC team and directly
  77. enhance SEPAC's science return by participating in the program, which
  78. would involve:
  79.  
  80.      Assembling an INSPIRE receiver from a nonprofit kit;
  81.  
  82.      Practicing data-taking procedures and techniques;
  83.  
  84.      Recording data on cassette tapes, based on SEPAC operation schedules;
  85.  
  86.      Sending data on cassette tapes to SEPAC for analysis; and,
  87.  
  88.      Receiving spectrograms, which are frequency time plots, of your data
  89. for later study.
  90.  
  91.      The kit will cost less than $50.  In addition, students will need an
  92. inexpensive stereo cassette recorder and blank cassette tapes to record
  93. the data during SEPAC operations.
  94.  
  95.        For information, please send a business-sized self-addressed
  96. envelope with two stamps to: 
  97.  
  98. Bill Pine
  99. Science Department
  100. Chaffey High School
  101. 1245 N. Euclid Avenue
  102. Ontario, CA  91762
  103.  
  104.  
  105.  
  106. NASA Launches Study of 90-Day  Orbiter Docked to Station
  107.  
  108.      Engineers are studying the feasibility of modifying the Space Shuttle
  109. so it can stay in space up to 90 days, a capability that would
  110. significantly increase Space Station Freedom use during the man-tended
  111. capability (MTC) phase, William B. Lenoir, Office of Space Flight
  112. associate administrator, said at a press briefing recently.
  113.  
  114.      "We'll have to assess how much bang for the buck we can get out of
  115. this, but we think it will be worthwhile," Lenoir said.
  116.  
  117.      "We are looking at doing this so we can get as much research as is
  118. reasonable from the space station from the man-tended phase until
  119. permanently manned capability in 1999." 
  120.   
  121.      The Space Shuttle program is already building toward a 16-day
  122. mission, which will be routine by the station's first element launch in 
  123. 1995.  A 16-day mission would allow three days for launch and landing,
  124. leaving 13-days for actual station assembly, and for research aboard
  125. Freedom once the U.S. laboratory is attached in 1996.
  126.  
  127.      The longest Space Shuttle mission so far has been 11 days, but
  128. "we are looking at what it would cost to do better than the 16 days we're
  129. looking at now," Lenoir said.  
  130.  
  131.      The program probably would gradually build up to the 90-daystays in
  132. orbit docked to the station, Lenoir said.  "The first year we might do 30
  133. days, the second year we might build up to 60 days, and in the third year
  134. we'd build up to 90 days."
  135.  
  136.      Money is not the only factor that will determine if this project will
  137. fly, Lenoir said. "We also have some technical challenges that we will
  138. have to better understand and overcome," he said.
  139.  
  140.      First, additional power generation capabilities will be necessary. 
  141. While docked to the station, the orbiter 's main power source would be the
  142. station, Lenoir said.  The challenge will be to ensure that the Shuttle
  143. can store enough electricity to return to Earth.  This may mean the
  144. Shuttle either would have to carry a cryogenic pallet in its cargo bay,
  145. deploy solar arrays, or use pressurized gas.  Second, the Shuttle's
  146. existing auto-landing system would have to be proven, because the pilots
  147. will have been in space for three or more months.  Third, engineers would
  148. have to demonstrate the ability to shut down all of the Shuttle's fuel
  149. cells on-orbit and then restart them, a task which has not yet been tried,
  150. Lenoir said. 
  151.  
  152.      Johnson Space Center also will be studying the stowage of food and
  153. other consumables, as well as the requirements on Freedom and the Space
  154. Shuttle fleet to reboost operations.
  155.  
  156.      NASA will be studying  this  program and possible flight experiments
  157. during the next six to eight months.
  158.  
  159.  
  160.  
  161. Office of Space Flight Establishes Spacelab - Station Directorate
  162.  
  163.      Office of Space Flight Associate Administrator William B. Lenoir last
  164. month created the Spacelab - Space Station Freedom Operations Directorate
  165. to foster cooperation and communication between the two similar programs. 
  166. Lenoir named Dr. Robert Parker as the division's director.
  167.  
  168.      "We should achieve a great deal of synergy and efficiency in working
  169. with the user community and in transitioning science and engineering
  170. programs from Spacelab to Space Station Freedom," Lenoir said.
  171.  
  172.      "The new office will use Spacelab experience to provide effective
  173. planning for space station operations and utilization and will seek to
  174. strengthen and improve relations with the user community," Lenoir said.
  175.  
  176.      Parker's career with NASA includes serving as mission scientist for
  177. the Apollo 17 mission and the program scientist for Skylab.  He was a
  178. mission specialist on two Spacelab missions: Spacelab 1, the first flight
  179. of the European Space Agency-developed laboratory; and Astro-1, a nine-day
  180. mission, which was carried out last December.
  181.  
  182.  
  183. Testing, Construction Under Way at Field Centers
  184.  
  185.      Space Station Freedom designers at Marshall Space Flight Center in
  186. Huntsville, Ala., recently completed an acceptance test of the Hamilton
  187. Standard predevelopment operational system test potable water processor. 
  188. This equipment will be used in the environmental control and life support
  189. system testbed at Marshall.
  190.  
  191.      Marshall engineers also successfully completed a fire detection
  192. system carbon dioxide dispersion tube test, as well as a hatch-latch
  193. pressure development test.
  194.  
  195.      Construction continues at Kennedy Space Center in Florida on the
  196. Space Station Processing Facility.
  197.  
  198.      Lewis' Research Center, Cleveland, Ohio, has selected a single
  199. supplier, Spectralab, to provide solar cells for Freedom's photovoltaic
  200. solar arrays, which will provide electricity for the station.  Lewis
  201. engineers also have initiated a photovoltaic plasma interaction test at
  202. its electric power lab.  Acceptance testing also has begun on the
  203. engineering model battery orbital replacement unit at the Lewis power
  204. systems facility.  Another important test under way at Lewis will measure
  205. the lifespan of the station's beta gimbal test equipment.
  206.  
  207.      Designers and engineers will use data gathered from these ground
  208. tests to perfect the station's flight hardware.
  209.  
  210.  
  211.  
  212. Getting a Payload Aboard Station Is Hard Work
  213.  
  214.      When designers outfit a laboratory on Earth with scientific
  215. equipment, they measure each room to decide how many equipment racks, work
  216. benches, refrigerators, and other items will fit.  They order the
  217. equipment and a delivery truck just pulls up to the back door.  Movers
  218. unload the equipment, and carry it into place.
  219.  
  220.      Outfitting a laboratory that is cruising 220 nautical miles above
  221. Earth's surface is not that easy.
  222.  
  223.      The U.S. laboratory, where most of the U.S. payloads will be housed,
  224. will be about the same size as a small bus -- 27 feet long with a diameter
  225. of 14.4 feet.  This may sound small, but this module will shelter several
  226. of the life sciences and microgravity facilities, totaling 29 racks. 
  227. These facilities will be installed on the station by the year 2001 in the
  228. U.S., European Space Agency (ESA), and Japanese laboratories.
  229.  
  230.      Getting that much hardware up to orbit -- and making sure it
  231. functions properly -- will take a lot of detailed planning.
  232.  
  233.      Now that most of the science payloads are becoming better defined,
  234. space station engineers can work with the individuals or organizations who
  235. will do research (the users) on the station to determine how best to get
  236. the payloads up to the station, and in what order.  How will we actually
  237. get all those payloads from the ground up to the station?  Will the
  238. building of the station interfere with the installation of the payloads,
  239. or vice versa?  How much crew time will it take to install and check out a
  240. payload in a lab module?
  241.  
  242.      Engineers plan to send the U.S. lab up to orbit in the Shuttle bay
  243. either fully outfitted with payloads and support systems or nearly so.  
  244.  
  245.      The utilization flights will be dedicated to both the transfer of
  246. payloads from the ground to station, and to associated payload operations.
  247.  Other Shuttle flights, termed "mission build" flights, will transport
  248. elements needed to build the station.
  249.  
  250.      The users are currently scheduled to have eight utilization flights
  251. between man-tended capability (MTC) in December 1996 and permanently
  252. manned capability (PMC) in September 1999.
  253.  
  254.      By the first utilization flight, a "shirt sleeve" environment will
  255. exist in the lab so the crew can work on the science payloads without the
  256. constraints of a space suit.
  257.  
  258.      An average utilization flight will be 16 days long.  About 13 of
  259. those days will be dedicated to the actual payload mission; the rest will
  260. be used for launch and landing operations.  To stay in space so long, the
  261. Shuttle may be equipped with an 'extended duration orbiter' kit that
  262. provides extra supplies of oxygen, water and power.  Additional food and
  263. clothing also will have to be brought in the Shuttle for these longer
  264. flights.
  265.  
  266.      The payloads being transferred to station will be carried in the
  267. payload bay in a mini-pressurized lo-gistics module (MPLM).  It is
  268. referred to as 'mini' because it is a small version of the pressurized
  269. logistics module (PLM) that will be used after PMC, when having a full
  270. crew on orbit will require the transport of a large amount of housekeeping
  271. supplies.
  272.  
  273.      Here is a typical scenario for a utilization flight:
  274.  
  275.      Payload hardware is first assembled into racks on the ground and
  276. tested to make sure it will operate safely and as planned when finally
  277. installed on orbit.
  278.  
  279.      These racks then are installed in the MPLM, in the Space Station
  280. Processing Facility at Kennedy Space Center in Florida.
  281.  
  282.      Next, the MPLM is placed in a transport canister, taken to the
  283. Vehicle Assembly Building, and hoisted into a vertical position.  From
  284. there, it is finally taken to the Shuttle, which is already sitting on the
  285. launch pad.  It is hoisted up to the Shuttle, moved into the bay and the
  286. Shuttle bay doors are closed.
  287.  
  288.      Because it probably will take several weeks from the time the MPLM is
  289. placed into the payload bay until the Shuttle is ready to launch, there
  290. may be a problem with loading animals and other perishable items that
  291. usually need to be tended.  Space station engineers and science users are
  292. working together to solve this problem.  Part of the solution may be to
  293. store these items in the Shuttle middeck lockers, which can be accessed
  294. just prior to launch.
  295.  
  296.      Once the Shuttle is launched and then has docked with the station,
  297. the three or four crew members assigned to the payloads will start the
  298. process of moving the MPLM from the payload bay to the station. The
  299. station's robotic  arm will lift the MPLM out of the bay and attach it to
  300. a space station hatch on the pressurized node.  The crew members will
  301. board the station from the Shuttle through a different pressurized
  302. berthing hatch and then go into the MPLM through the node.
  303.  
  304.      The payloads have to be moved very slowly and carefully, because
  305. while they may have little weight in space, they still have considerable
  306. mass.  If a crewmember pushes a payload rack too hard, it may put quite a
  307. dent in a station wall.  And the crew member doesn't have a lot of room to
  308. work in;  the square hatches are only about 50 inches on a side, just
  309. enough room to push a rack through.
  310.  
  311.      Once the crewmember has pulled the rack out of the MPLM, guided it
  312. through one or more hatches and around any corners into the U.S. lab, he
  313. or she must connect it.  There are electrical, data, fluid and mechanical
  314. connections that must be assembled and checked out.  The payload itself
  315. must be activated and tested to make sure it works.
  316.  
  317.      When all the new payloads have been checked out, the crew can begin
  318. to do space experiments using the new payloads and the ones that may
  319. already have been on orbit.  For the remaining days the Shuttle is docked
  320. to the station, emphasis is placed on experiments that need active crew
  321. participation.
  322.  
  323.